A Probabilistic Model For Sequence Analysis
نویسندگان
چکیده
This paper presents a probabilistic approach for DNA sequence analysis. A DNA sequence consists of an arrangement of the four nucleotides A, C, T and G and different representation schemes are presented according to a probability measure associated with them. There are different ways that probability can be associated with the DNA sequence: one way is when the probability of an occurrence of a letter does not depend on the previous one (termed as unsuccessive probability) and in another scheme the probability of occurrence of a letter depends on its previous letter (termed as successive probability). Further, based on these probability measures graphical representations of the schemes are also presented. Using the digram probability measure one can easily calculate an associated probability measure which can serve as a parameter to check how close is a new sequence to already existing ones. Keywords-Successive Probability; Unsuccessive Probability; Transition Probability; Digram Probability;
منابع مشابه
Image Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملModeling of a Probabilistic Re-Entrant Line Bounded by Limited Operation Utilization Time
This paper presents an analytical model based on mean value analysis (MVA) technique for a probabilistic re-entrant line. The objective is to develop a solution method to determine the total cycle time of a Reflow Screening (RS) operation in a semiconductor assembly plant. The uniqueness of this operation is that it has to be borrowed from another department in order to perform the production s...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملارائه یک مدل احتمالاتی برای توزیع خوردگی یکنواخت در سکوهای ثابت فلزی در خلیج فارس
For structural reliability assessment or risk analysis of aging offshore steel structures, it is essential to have a probabilistic model, which contains specific statistical parameters, and predicts long term corrosion loss as a function of time. The aim of this study is to propose such model for offshore jacket platforms in the Persian Gulf. Field measurements for material loss due to uniform ...
متن کاملProbabilistic View of Occurrence of Large Earthquakes in Iran
In this research seismicity parameters, repeat times and occurrence probability of large earthquakes are estimated for 35 seismic lineaments in Persian plateau and the surrounding area. 628 earthquakes of historical time and present century with MW>5.5 were used for further data analysis. A probabilistic model is used for forecasting future large earthquake occurrences in each chosen lineament....
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1002.2412 شماره
صفحات -
تاریخ انتشار 2010